
1. DATA MINING FROM HIGH-

DIMENSIONAL DATA

High-dimensional data are often
encountered in management applications
with the aim to perform a decision making,
which can be described as selecting an
activity or series of activities among several
alternatives (Martinez et al., 2011). Data
mining methods for information extraction

from high-dimensional data represent an
important tool allowing to find answers to
given questions concerning a fixed database
or to generate hypotheses from a random
sample.

High-dimensional data are usually
understood to have a form of a data set with
a large number of observations and/or a large
number of variables. Statisticians usually
consider a situation with a small number of
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observations (Hall et al., 2005), while the
term big data is used in computer science in
a broader sense for such data, if there is an
additional requirement to automate the
analysis within e.g. online applications.
Indeed, information extraction from data
with a large number of variables is
complicated even in situations with a large
number of observations.

An important area of applications of high-
dimensional information extraction consists
in decision support systems, which can be
described as very complicated systems
offering assistance with the decision making
process with the ability to compare different
possibilities in terms of their risk (Kalina et
al., 2013). Such partially or fully automatic
systems are capable to solve a variety of
complex tasks, to analyze a large database
containing different information
components, to extract information of
different types, and deduce conclusions from
them in management or econometric
applications (Brandl et al.,
2006).Nevertheless, the largest applications
of high-dimensional information extraction
can be found in molecular genetics or image
analysis.

Standard multivariate statistical methods
turn out to be unreliable for high-
dimensional data. An intensive current
research in statistics has the aim to propose
new multivariate methods tailor-made for
classification of high-dimensional data, if the
number of variables exceeds the number of
observations. Several works have shown that
an analysis starting with a dimensionality
reduction is suboptimal, although it remains
to be the most common approach
(Greenland, 2000). There is an urgent
demand for new reliable methods for high-
dimensional data in econometric and
management applications.

A high dimension of the data is a major
problem also in data mining applications. A
management database, e.g. a customer
analytical record (CAR), may contain a huge
number of variables reported for a large
number of units, while the database of units
may correspond to the entire population.
Therefore, data mining requires tailor made
methods suitable for the analysis of high-
dimensional data, while multivariate
statistics is traditionally focused only on data
with a small dimension. We can say that a
high-dimensional data set does not even need
a (purely) statistical analysis and data mining
is more suitable for information extraction
from high-dimensional data than classical
statistical methods.

At any case, specific methods for data
mining from high-dimensional data are only
at the beginning of their development and
there is no unanimity concerning the
suitability of particular methods in different
situations (Kalina, 2014). Thus, the situation
seems rather chaotic and no systematic
comparison of the performance of particular
methods in different applications has been
presented (Turchi et al., 2013). It is also
possible to criticize available software for
lack of reliability or delay in the
implementation of newly proposed specific
methods for the information extraction from
high-dimensional data.

This paper has the following structure.
Section 2 discusses various definitions of
robustness.Section 3 gives an overview of
robust methods for dimensionality reduction.
While we described robustness aspects of
multilayer perceptrons in Kalina (2013),
other types of neural networks are discussed
in Section 4 and Section 5 is devoted to
support vector machines. We contribute to
the research direction of robust data mining
in Section 6, which investigates properties of
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the robust nonlinear regression estimator
from Kalina (2013). Throughout the paper,
examples of applications in management or
econometrics are given.

2. THE PROBLEM OF ROBUSTNESS

The concept of robustness has been
understood in different ways in robust
statistics, computer science, numerical
mathematics, or optimization. In a broader
definition, robustness is insensitivity to
violations of assumptions or to deviation
from a standard situation. Thus, we can
perceive robustness as numerical stability or
as insensitivity to the presence of noise,
outlying measurements, normal distribution
of the data, and high dimensionality.

Still the existing multivariate statistical
methodology suitable for highly dimensional
data is too sensitive (non-robust) to the
presence of outlying or incorrectly measured
values (Martinez et al., 2011). Robustness
properties of current high-dimensional
methods have been investigated e.g. by Guo
et al. (2007), although these general methods
have been investigated primarily in
molecular genetic applications.

Robust statistics defines robustness as
insensitivity to the presence of outlying
measurements (outliers), which are capable
to influence classical statistical methods
heavily. Statisticians and econometricians
have developed the robust statistical
methodology as an alternative approach to
some standard procedures, which possess a
robustness (insensitivity) to the presence of
outliers as well as to standard distributional
assumptions (Jurečková & Picek, 2006;
Kalina, 2012). Nevertheless, the majority of
robust statistical methods is computationally
infeasible for high-dimensional data.

In numerical mathematics, robustness can
be interpreted as insensitivity to the rounding
error or to small changes of the data. Let us
motivate this approach to robustness by the
task of solving a linear set of equation

Ax = b (1)

by the least squares method. A requirement
to reduce the influence of noise on the
computed solution leads to a modification of
the least squares method, most commonly by
the Tikhonov regularization. Then, the
solution is obtained as the solution of the
minimization

min{||b – Ax||2 + ||λx ||2 } (2)

over x. The corresponding set of normal
equations can be formulated as

(ATA + λ2I)x = Ab (3)

and therefore the solution x has the form

(4)

where I is a unit matrix. The solution is
known as the ridge regression estimator
(Hastie et al., 2009). The concept of robust
data mining was introduced as a
methodology based on robust optimization,
i.e. “optimization to provide stable solutions
that can be used in case of input
modification” (Xanthopoulos et al., 2013).

In general, (4) can be described as a
regularized version of the least squares
estimator. Regularization allows to solve ill-
posed or insoluble high-dimensional
problems by means of additional
information, assumptions, or penalization.
An intensive current research in statistics has
the aim to propose regularized multivariate
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methods tailor-made for classification of
complex data. Regularization is also the
basis of support vector machines, as this will
demonstrated in Section 4. General
relationship between regularization and
robust approaches was investigated by
Jurečková and Sen (2006). Nevertheless, a
regularized method is not necessarily robust.
To give an illustration, Jurczyk (2012)
explained that the ridge regression estimator
(4) is not robust from the statistical point of
view.

Combining both the numerical and
statistical point of view, it is desirable for
practical methods to be double robust. This
concept will be presented in the context of
cluster analysis. This is a different concept
from the double robustness of Funk et al.
(2011), which combines robustness for two
different epidemiological models. The
necessity of robustifying existing methods
for high-dimensional applications is well
known (Hubert et al., 2008). In multivariate
statistics, the Mahalanobis distance can be
criticized for being sensitive both to outlying
measurements and to a high dimensionality.

Besides the non-robustness, we can
mention several other complications, which
are relevant for the information extraction
from biomedical data. Other problems not
covered by this paper are related to
measuring instrumental variables instead of
the original ones, unrealistically strong
assumptions of statistical approaches, or
dichotomization of continuous data (Harrell,
2001).

3. DIMENSIONALITY REDUCTION

Dimensionality reduction methods
suitable for high-dimensional data include
both linear and nonlinear methods. Belloni

and Chernozhukov (2011) gave an overview
of the methodology suitable for econometric
applications. Linear methods, e.g. principal
component analysis or factor analysis, are
commonly based on matrix
eigendecomposition. Numerically stable
algorithms are available (McFerrin,
2013),but there exist such implementations
in software, which fail for data with the
number of variables exceeding the number of
observations. Further, variable selection by
means of hypothesis testing (Smyth, 2005) is
a common approach. However, its primary
aim in this context is to rank the variables in
the order of evidence against the null
hypothesis rather than to assign p-values to
variables. Other approaches to
dimensionality reduction include approaches
based on the information theory (Furlanello
et al., 2003) or variable selection
simultaneously with statistical modeling, e.g.
lasso (Hersterberg et al., 2008). Statisticians
have a tendency to search for parsimonious
models, i.e. simple models with a small set of
relevant variables, which was criticized by
Harrell (2001) as unjustifiable in some cases.

If the high-dimensional data are observed
in two or more different groups, then it is
important to know that common
dimensionality reduction methods are not
suitable, i.e. they are tailor-made for
classification purposes. Naïve approaches to
classification of high-dimensional data start
by dimension reduction and proceed with a
consequent classification analysis. Several
comparisons of various dimension reduction
techniques for the classification context were
compared e.g. by Dai et al. (2006) or Suzuki
and Sugiyama (2010). Zuber and Strimmer
(2011) proposed a variable selection
procedure for a high-dimensional regression,
which takes correlation among regressors
into account. The method encourages
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grouping of correlated regressors and down-
weights antagonistic variables.

Robust dimensionality reduction
procedures include the method of Vanden
Branden and Hubert (2005) called robust soft
independent modelling of class analogies
(RSIMCA). It is a dimension reduction
technique tailor-made for the classification
task. The method applies a robust principal
component analysis (ROBPCA) separately
on each group of the data. Here, each group
is reduced to a different dimension. A new
observation is classified by means of its
deviations to the different robust principal
component analysis (PCA) models,
exploiting a robust Mahalanobis distance.
Other important approaches to dimension
reduction for high-dimensional data include
the sliced inverse regression (Duan & Li,
1991) or minimum redundancy maximum
relevance (Liu et al., 2005).

4. NEURAL NETWORKS

Machine learning methodology represents
a variety of very flexible popular tools for
solving various types of problems.
According to the type of learning, it is
commonly distinguished between supervised
and unsupervised machine learning methods
(Hastie et al., 2009). While multilayer
perceptrons were critically reviewed in
Kalina (2013), in this paper we discuss other
types of neural networks together with their
performance for high-dimensional data.
Section 4.1 recalls briefly multilayer

perceptrons, Section 4.2 is devoted to radial
basis function networks, and Section 4.3 to
self-organizing maps. Table 1 gives a list of
software tools available for the computation
of described methods within the R software
package.

4.1. Multilayer Perceptron

First, we would like to disprove a
common belief that multilayer perceptrons
do not demand any assumptions about the
probability distribution of the data. However,
they do have such assumptions on the data
distribution which are analogous to
assumptions of statistical models. Actually,
some simple special cases of neural networks
are equivalent to commonly used statistical
methods. Therefore, it would be important to
check the assumptions, as it is common to
validate the assumptions of common
statistical methods.  In contrary to statistical
modeling, a practical data mining inclines to
ignoring the assumptions (Fernandez, 2003)
and the consequences of their violation.
Moreover, neural networks are not even
accompanied by such diagnostic tools for
validating the assumptions.

Recent references described the
sensitivity of neural networks with respect to
the presence of outlying data points (outliers)
in the data (Murtaza et al., 2010). Estimates
of parameters turn out to be biased and under
the presence of outliers and it is actually
desirable to estimate the parameters in a
different robust way in such a situation
(Rusiecki, 2008). Other works studied neural
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networks based on robust estimators of
parameters in nonlinear regression (Jeng et
al., 2011). The problem of robustness of
multilayer percpetrons is connected also to
the generalization ability of the networks,
which may be improved by pruning or
selecting relevant variables for the optimal
learning. Fortunately, a variety of tools for
both pruning and variable selection for
neural networks is available (Šebesta &
Tučková, 2005). In practical applications,
multilayer perceptrons have been observed
to be suitable also in the high-dimensional
setting (Rowley et al., 1998; Zimmermann et
al., 2001).

4.2. Radial Basis Function Network

A radial basis function network is able to
model a continuous nonlinear function. In
contrary to multilayer perceptrons, the input
layer transmits a measure of distance of the
data from a given point to the following
layer. Such measure is called a radial
function. Typically, only one hidden layer is
used and an analogy of the back-propagation
is used to find the optimal values of
parameters. The output of the network has
the form

(5)

for x ∈ Rp, where n is the total number of
neurons in the network and ci is a given point
corresponding to the i-th neuron.

The radial basis function itself is defined
as

ϕ (x, ci) = exp{–β ||x – ci ||2}, x ∈ Rp,       (6)

and the points ci can be interpreted as
centers, from which the Euclidean distances
are computed.

The output (5) is a sum of weighted
probability densities of the normal
distribution. The training of the networks
requires to determine the number of radial
units and their centers and variances. The
formula (5) does not contain a normalizing
constant for the density of the multivariate
normal distribution, but it is contained in the
weights for individual neurons. The rate of
converge of radial basis function networks in
approximating smooth functions has been
investigated e.g. in Kainen et al. (2009).
Nevertheless, this type of network is less
suitable for high-dimensional data (Nisbet et
al., 2009).

4.3. Self-Organizing Map

Self-organizing map is a type of a neural
network searching for a mapping of
multidimensional data to a low-dimensional
grid with a clear graphical interpretation
(Kohonen, 1982). It transforms complicated
nonlinear associations to geometrically
simpler ones, most commonly to dimension
2. The network has the ability to organize the
data and serves as an unsupervised tool for
exploration and visualization of high-
dimensional data and revealing associations
among variables.

The network has only an input layer and
an output layer or radial units with neurons
geometrically arranged to a two-dimensional
grid with a given topological structure, e.g.
square or hexagonal. Each neuron of the
input layer is connected with all neurons of
the output layer. The process of learning
proceeds iteratively in the following way.
For a given observation, such neuron is
searched for, which has the best
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correspondence to the observation, i.e. which
places the observation to the map so that the
topology of the observed data is preserved as
well as possible. This learning corresponds
to a competition among neurons driven by
the rule that the winner takes all, i.e. the
neuron with the best reaction on the stimulus
is found. The winning neurons are arranged
and constitute the set of coordinates in the
grid.

The final visualization depicts all
observations in the grid. Such observations,
which are close to each other in the original
high-dimensional space, are close also in this
grid. Therefore, we can say that this neural
networks creates a topological map of the
input variables. Thus, the method is close to
multidimensional scaling. Besides, a self-
organizing map may lead to revealing
clusters in the data. Therefore, it may be used
as a clustering procedure prior to a
consequent classification analysis. There is a
good experience with the stability of self-
organizing maps for high-dimensional data
and they are even recommended as a
reasonable alternative of cluster analysis for
high-dimensional data (Penn, 2005).

5. SUPPORT VECTOR MACHINES

Neural networks have been criticized for
their extreme simplicity from the theoretical
point of view, e.g. by Minsky already around
1968. Although neural networks are
successful in practical tasks, it is commonly
explained by their combination with a
sophisticated heuristics. Vapnik (1995) not
only explained the suboptimality of neural
networks e.g. in classification tasks, but also
brought a constructive alternative called
support vector machine (SVM).

A SVM explicitly formalizes the concepts

solved implicitly by neural networks, but a
neural network does not represent a special
caes of the SVM. Instead, a SVM can be
considered a close relative of neural
networks and an alternative approach to their
training. The difference is e.g. in searching
for the optimal values of the parameters,
which allow the optimal prediction.
Compared to heuristically based neural
networks, the SVM stands on a profound
mathematical background and yields
considerably better results (Nisbet et al.,
2009). The SVM as a supervised learning
method spread quickly to various
classification and regression applications and
a practical interest for neural networks
started to decline.

A linear SVM classifier for classification
into two groups is based on searching for
such linear structure (hyperplane), which
maximizes the margin between the two
groups. It is based on support vectors, which
are defined as selected observations near the
margin between the groups. The
classification rule depends on the value of a
parameter λ, which is responsible for the
width of the margin between the groups and
the smoothness of the nonlinear boundary,
which separates both groups. A narrow
margin corresponds to a wiggly boundary
curve, which reproduces the support vectors
to a large extent. On the other hand, a wide
margin corresponds to a smooth boundary
between both groups. It has a worse ability to
classify data from the training set, but is
usually better in classifying new independent
observations. A suitable value of λ is
determined by a cross validation.

A nonlinear SVM starts by projecting the
data to a space with a larger dimension. The
linear classification problem is solved there
and linear boundaries in the larger space
correspond to nonlinear classification
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boundaries in the original space. The
transformation between both spaces is
granted by a kernel transformation with a
positive semidefinite kernel. Searching for
the optimal linear rule with the widest
margin requires intensive computations of
inner products in a high-dimensional space.
Thanks to the so-called kernel trick, the
computation is not needed to be computed
explicitly for the high dimension, but it is
sufficient to perform a much simpler
computation of the value of the kernel
applied on the original data. As an
illustration, let us consider a classification
into two groups with selected support vectors
x1, ... , xS. Let their response is equal to +1 for
values in group 1 and -1 for values in group
2. Then, the output of the classifier is
copmuted as

(7)

where K is the kernel function, w1, ... , wS

weights and b an intercept. The most
common choice of the kernel function is the
radial basis function (6).

Thanks to controling the complexity of
the solution, the SVM does not suffer from
the curse of dimensionality. The optimization
of parameters of a SVM is based on
searching for an equilibrium between a
prediction ability of the model and
complexity of the solution, which is
expressed by means of the Vapnik-
Chervonenkis dimension (VC dimension).
This principle called structural risk
minimization (SRM) corresponds to a
regularized version of a classical statistical
approach minimizing the empirical risk. At
the same time, it is a correction for a finite
number of observations in a certain sense.
However, optimizing the values of the

parameters requires a large number of
observations to be available.

Concerning robust properties of the SVM,
it is robust in the sense of the robust statistics
based on the concept of influence function
(Christmann & Van Messem, 2008). An
important research topic in the last 10 years
is focused on assumptions, which ensure the
SVM to be consistent. It is known that the
SVM is consistent under the assumption that
the loss function has a specific form. It
requires complicated considerations in
functional spaces to derive the consistency.

Some references claim that the SVM
leads to results comparable to those obtained
by a much simpler model (Blankertz et al.,
2008) such as regularized linear discriminant
analysis (Guo et al., 2007) or linear
regression. From the statistical point of view,
the SVM is based on a rather complicated
model. Still, it allows to obtain reliable
results in high-dimensional applications, e.g.
in image analysis. Vapnik (1995) applied the
SVM to a task of recognizing hand-written
digits in images. Later, Osuna et al. (1997)
used the SVM for the face detection in gray-
scale images. In a training data set containig
50 000 faces and non-faces, the method
selected 2500 support vectors, which have
the form of faces with the largest similarity
to non-faces as well as non-faces with the
largest similarity to faces. The classification
rule is based only on these images
completely ignoring the remaining ones.
These support vectors can be considered
prototypes of objects on the boundary
between the group of faces and non-faces.

Bobrowski and Łukaszuk (2011)
proposed an alternative method to the SVM,
which relaxes the linear separability. It is
suitable for high-dimensional genetic data,
because the sparsity of the data in the high-
dimensional space usually allows the data to
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be separated linearly (by a hyperplane). The
method successively removes selected
variables from the model so that a good
linear separation among the groups is
retained. Further, the authors extended the
method to censored clinical data about
patient survival (Bobrowski & Łukaszuk,
2012).

6. NONLINEAR REGRESSION

The nonlinear least weighted squares
(NLWS) regression estimator and an
efficient algorithm for its computation were
proposed in Kalina (2013). Assuming a
nonlinear regression model, the estimator is
based on down-weighting less reliable
observations, which are found during the
computation of the estimator. Now, we show
two examples illustrating the potential of the
method.

Example 1. We illustrate the performance
of the nonlinear least weighted squares
estimator on a numerical example. The data
set consists of 8 data points shown in Figure
1. The nonlinear regression model is used in
the form

Yi = a + b (Xi – c)2 + ei,    i = 1, ... , n,     (8)

where Y1, ... , Yn are values of the response,
X1, ... , Xn values of the regressor, a, b, and c
are regression parameters and e1, ... , en are
random errors.

Figure 1 shows fitted values
corresponding to the least squares fit and
also the least weighted squares fit with the
linearly decreasing weights. The least
squares fit has the tendency to fit well also
influential data points. The robust fit is able

to find such subset of the data points, for
which there is a very good regression fit. At
the same time, it down-weights data points
corresponding to larger values of the
regressor.

Table 2 gives an evidence in favor of the
algorithm for computing the NLWS
estimator.

The least squares estimator minimizes the

value of                 . Therefore,  it   may   be

expected  that it also has a quite small  value 
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Figure 1. Nonlinear least squares (plus signs)
and nonlinear least weighted squares (bullets)
estimators in Example 1

Table 2.Values of various loss functions for
the least squares and nonlinear least
weighted squares estimators in Example 1
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of                     , which is  the  loss  function 

of the NLWS estimator. In this example, the
NLWS estimator has a much larger value  of

than    the    least     squares    fit. 

However, the algorithm used for computing
the NLWS has found  even a  much  smaller 

value of                     than the least  squares. 

This allows us to conclude that the NLWS
algorithm turns out to give a reliable result.

Example 2. The purpose of this example is
to illustrate the behavior of various nonlinear
regression estimators for heteroscedastic
data, which are shown in Figure 2. At the
same time, the example reveals an
undesirable property of the nonlinear least
trimmed squares estimator (NLTS), which is
a highly robust estimator in the nonlinear
regression and extension of the least trimmed
squares (LTS) estimator (Rousseeuw & van
Driessen, 2006).

We use the same model (9) as in Example
1. Figure 3 shows the results for the least
squares, the NLTS (trimming away 25 % of
the data points) and NLWS with linearly
decreasing weights. The NLTS estimator
completely ignores the heteroscedastic
nature of the data and finds an unsuitable
subset of the data, for which the regression
fit seems very good.Such inappropriate
behavior of the NLTS estimator has not been
reported, but corresponds to an analogous
problem of the LTS estimator in the linear
regression model. The problem is associated
with the high local sensitivity of the LTS
estimator, which was described by Víšek
(2000).

The least squares as well the NLWS
estimators seem to find a more adequate
regression fit also for data points with the
regressor exceeding the value 2; their
residuals are namely much closer to
symmetry around 0. Thus, Example 2 brings
an arguments in favor of the NLWS
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Figure 2. Original data in Example 2

Figure 3. Various nonlinear regression
estimators under heteroscedasticity in Example
2: least squares (empty circles), least trimmed
squares (plus signs), and least weighted squares
(full circles)



estimator compared to the existing NLTS
estimator.

To summarize, this paper recalls
principles of machine learning and gives an
overview of important types of methods,
including multilayer perceptrons, radial basis
function networks, self-organizing maps, and
support vector machines. All of these
methods are commonly to used to solve a
variety of tasks in business and econometric
applications. The paper discusses the
assumptions and limitations of the methods.
It follows that a robust estimation of
parameters in machine learning methods is
highly desirable. Furthermore, we focus on
the task of function approximation by
multilayer perceptrons and give an overview
of existing works based on robust estimation
in nonlinear regression. As an original result,
we propose the NLWS estimator, describe an
approximative algorithm for its computation,
and show its performance on numerical
examples. While the estimator is constructed

to be resistant to the presence of outlying
measurements in the data, there seems an
advantage in assigning smaller weights to
outliers compared to their complete
trimming as performed by the existing NLTS
estimator.
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О ЕКСТРАКЦИЈИ РОБУСТНИХ ПОДАТАКА НА ОСНОВУ

ВИСОКО ДИМЕНЗИОНИХ ПОДАТАКА

Jan Kalina

Извод

Екстракција информација из високо димензионих података представља веома значајан
проблем у савременом примењеном менаџменту и економетрији. Значајан аспект, са
практичног гледишта, је осетљивост метода учења машина у присуству екстрамних вредности
података, док други аспект представља нумеричка стабилност приликом добијања
информације из вишедиминзионих података.

Овај рад даје преглед типова “data mining-a”, дискутује њихову погодност за
вишедимензионе податке и критички дискутује њихове особине са погледа робустности, док
се сама робустност објашњава као различита перцепција у различитим концептима. Такође,
врши се анализа особина робустностног нелинеарног регресионог естиматора Калина (2013).

Кључне речи: “Data mining”, високо димензиони подаци, робустна економетрија, екстреми,
учење машина
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